Discipline: Actual problems of chemistry of polymer composites

Lecture 11.

Theme: Manufacturing of Fiber Reinforcements for Polymer Composites

Objective:

To understand the **methods of producing fiber reinforcements**, their **types**, **characteristics**, and the **influence of fiber properties** on the performance of polymer composites.

Key Questions:

- 1. What are the main types of fibers used in polymer composites?
- 2. How are continuous and short fibers manufactured?
- 3. What properties of fibers are critical for reinforcement effectiveness?
- 4. How does fiber manufacturing influence the mechanical and physical properties of polymer composites?

Lecture Content:

- Overview of Fiber Reinforcements:
 - Fibers are used to enhance strength, stiffness, and toughness of polymer composites.
 - Classification: continuous fibers (e.g., carbon, glass, aramid) and short/chopped fibers.
 - Selection depends on mechanical requirements, cost, processing method, and application.
- Manufacturing Methods for Fibers:
 - 1. Glass Fibers:
 - Produced from molten glass drawn through fine orifices (bushing).
 - Types: E-glass (electrical), S-glass (structural), C-glass (chemical resistance).
 - Post-processing: sizing applied to improve **matrix adhesion**.

2. Carbon Fibers:

- Derived from precursors such as polyacrylonitrile (PAN), pitch, or rayon.
- Process steps:

- **Stabilization:** oxidation at low temperature to form thermally stable structure.
- Carbonization: high-temperature treatment to remove non-carbon elements.
- Surface treatment and sizing: improve adhesion to polymer matrix.
- Variants: high-strength fibers (low modulus) and high-modulus fibers (stiffer, brittle).

3. Aramid Fibers:

- Produced by polycondensation and spinning of aromatic polyamides.
- Features: high toughness, impact resistance, low density.
- Used in ballistic composites, aerospace, and protective applications.

4. Natural Fibers:

- Sources: flax, jute, hemp, sisal.
- Processing: cleaning, retting, and spinning into yarns.
- Advantages: biodegradable, low density; limitations: variability, moisture absorption.

• Continuous vs. Short Fibers:

- o **Continuous fibers:** provide maximum load transfer and directional strength.
- Short/chopped fibers: easier to process, isotropic reinforcement, lower mechanical properties.
- o Fiber length and orientation must be controlled during composite manufacturing.

• Fiber Surface Treatment:

- o Critical to ensure strong adhesion with polymer matrix.
- o Methods: chemical sizing, plasma treatment, oxidation, silane coupling.

• Influence on Composite Properties:

- Fiber type, length, and orientation determine tensile strength, modulus, impact resistance, and thermal stability.
- Surface treatment affects interfacial bonding and durability.

Applications:

- Aerospace: carbon fiber prepregs for lightweight panels.
- o Automotive: glass fiber reinforcements for structural parts.
- o Sports equipment: aramid fibers for impact-resistant components.
- o Construction: natural fiber composites for eco-friendly panels.

Key Short Theses:

- 1. Fibers are the main reinforcement in polymer composites, classified as **continuous or short/chopped**.
- 2. Glass, carbon, aramid, and natural fibers are the most common reinforcement types.
- 3. Fiber properties—strength, modulus, toughness, and surface characteristics—determine composite performance.
- 4. Fiber manufacturing methods include drawing (glass), stabilization/carbonization (carbon), spinning (aramid), and processing of natural fibers.
- 5. Surface treatment improves adhesion with the polymer matrix, ensuring effective stress transfer.
- 6. Continuous fibers provide high directional strength, while short fibers offer isotropic reinforcement and easier processing.
- 7. The choice of fiber type and treatment must consider **mechanical** requirements, processing method, and final application.

Control Questions:

- 1. What are the main types of fibers used in polymer composites?
- 2. Describe the manufacturing process of carbon fibers.
- 3. How do continuous fibers differ from short fibers in composite applications?
- 4. Why is fiber surface treatment important?
- 5. Name three methods of surface treatment for fibers.
- 6. How do fiber properties influence the mechanical performance of polymer composites?
- 7. What are the advantages and limitations of natural fibers as reinforcements?

Recommended references

Main literature:

- 1. Introduction to Polymer Science and Chemistry: A Problem-Solving Approach, Second Edition 2nd Edition / by Manas Chanda, CRC Press; 2nd edition (January 11, 2013)
- 2. Polymer Chemistry 2nd Edition / by Paul C. Hiemenz, Timothy P. Lodge, CRC Press; 2nd edition (February 15, 2007)
- 3. Semchikov Yu.D. High-molecular compounds: Textbook for universities. Moscow: Academy, 2003, 368.
- 4. S. Thomas, K. Joseph, S.K. Malhotra, K. Goda, M.S. Sreekala. Polymer composites. Wiley-VCH, $2012.-829\,$ p.

5. Irmukhametova G.S. Fundamentals of polymer composite materials technology: textbook for universities; Al-Farabi Kazakh National University. - Almaty: Kazakh University, 2016. - 175 p.

Additional literature:

- 1. Polymer composite materials (part 1): a tutorial / L.I. Bondaletova, V.G. Bondaletov. Tomsk: Publishing house of Tomsk Polytechnic University, 2013. 118 p.
- 2. Polymer composite materials: structure, properties, technology. Edited by Berlin A.A. St. Petersburg, Publishing house "Profession", 2008. 560 p.
- 3. Polymer composite materials: structure, properties, technology: a tutorial / M.L. Kerber et al.; under the general editorship of A.A. Berlin. St. Petersburg: Profession, 2009.- 556, [4] p.
- 4. Bataev, A.A. Composite materials. Structure, production, application: a tutorial. manual / A. A. Bataev, V. A. Bataev. M.: Logos, 2006. 397, [3] p. (New University Library).